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Abstract. A recently proposed super-heat-kernel technique is applied to SU(2)L × SU(2)R heavy baryon
chiral perturbation theory. A previous result for the one-loop divergences of the pion–nucleon system to
O(p3) is confirmed, giving at the same time an impressive demonstration of the efficiency of the new
method. The cumbersome and tedious calculations of the conventional approach are now reduced to a few
simple algebraic manipulations. The present computational scheme is not restricted to chiral perturbation
theory, but can easily be applied or extended to any (in general non-renormalizable) theory with boson–
fermion interactions.

1 Introduction

The modern treatment of the pion–nucleon system as an
effective field theory of the standard model was pioneered
by Gasser, Sainio, Švarc [1] and Krause [2] who formu-
lated the “relativistic” version of baryon chiral perturba-
tion theory. It was then shown by Jenkins and Manohar
[3] that the methods of heavy quark effective theory [4]
allow for a systematic low-energy expansion of baryonic
Green functions in complete analogy to the meson sector.
The latter approach is usually called heavy baryon chiral
perturbation theory.

Applications of this effective field theory beyond the
tree level require the knowledge of the divergences gener-
ated by one-loop graphs. For the pion–nucleon interaction
in the heavy mass expansion, the full list of one-loop diver-
gences to O(p3) has been worked out by Ecker [5]. This
analysis was then extended to the three-flavour case by
Müller and Meißner [6]. In these papers, the bosonic loop
and the mixed loop (boson and fermion lines in the loop)
were treated separately. This required a cumbersome in-
vestigation of the singular behaviour of products of prop-
agators, because the mixed loop does not have the form of
a determinant, like the purely bosonic or fermionic loops.

To overcome these difficulties, we have recently devel-
oped [7] a method where bosons and fermions are treated
on an equal footing. Employing the notions of supermatri-
ces, superdeterminants and supertraces [8,9], we have con-
structed a super-heat-kernel representation for the one-
loop functional of a boson-fermion system. In this ap-
proach, the determination of the one-loop divergences is
reduced to simple matrix manipulations, in complete anal-
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ogy to the familiar heat-kernel expansion technique for
bosonic or fermionic loops.

The present paper is organized as follows: in Sect. 2 I
briefly review the super-heat-kernel method. In contrast
to the Euclidean space formulation used in [7], the pre-
sentation in this work refers to Minkowski space through-
out. In Sect. 3 the super-heat-kernel formalism is applied
to a rather general class of scalar–heavy fermion inter-
actions (including, of course, heavy baryon chiral pertur-
bation theory). The one-loop divergences to second or-
der in the fermion fields are given explicitly. These re-
sults are then specialized to the two-flavour version of
heavy baryon chiral perturbation theory in Sect. 4. My
conclusions, together with an outlook to possible exten-
sions of the present work, are summarized in Sect. 5. Sev-
eral momentum-space integrals are collected in the Ap-
pendix.

2 Super-heat-kernel

Let us consider a general action

S[ϕ,ψ, ψ] =
∫
ddx L(ϕ,ψ, ψ) (2.1)

for nB real scalar fields ϕi and nF spin 1/2 fields ψa. An-
ticipating the later use of dimensional regularization, I am
starting in d-dimensional Minkowski space. To construct
the generating functional Z of Green functions, these fields
are coupled to external sources ji (i = 1, . . . , nB), ρa, ρa
(a = 1, . . . , nF ),

Z[j, ρ, ρ] = eiW [j,ρ,ρ]

=
∫

[dϕdψdψ] ei(S[ϕ,ψ,ψ]+jTϕ+ψρ+ρψ) , (2.2)



356 H. Neufeld: The super-heat-kernel expansion and the renormalization of the pion–nucleon interaction

where W [j, ρ, ρ] is the generating functional of connected
Green functions. I have used the notation

jTϕ+ ψρ+ ρψ :=
∫
ddx (jiϕi + ψaρa + ρaψa) . (2.3)

The normalization of the functional integral is determined
by the condition Z[0, 0, 0] = 1. The solutions of the clas-
sical equations of motion

δS

δϕi
+ ji = 0,

δS

δψa
+ ρa = 0,

δS

δψa
− ρa = 0 (2.4)

are denoted by ϕcl, ψcl. They are uniquely determined
functionals of the external sources. With fluctuation fields
ξ, η defined by

ϕi = ϕcl,i + ξi , ψa = ψcl,a + ηa , (2.5)

the integrand in (2.2) is expanded in terms of ξ, η, η. The
resulting loop expansion of the generating functional

W = WL=0 +WL=1 + . . .

starts with the classical action in the presence of external
sources:

WL=0 = S[ϕcl, ψcl, ψcl] + jTϕcl + ψclρ+ ρψcl . (2.6)

The one-loop termWL=1 is given by a Gaussian functional
integral

eiWL=1 =
∫

[dξdηdη] eiS
(2)[ϕcl,ψcl,ψcl;ξ,η,η] , (2.7)

where

S(2)[ϕcl, ψcl, ψcl; ξ, η, η]

=
∫
ddx L(2)(ϕcl, ψcl, ψcl; ξ, η, η) (2.8)

is quadratic in the fluctuation variables. Employing the
notation introduced in (2.3), S(2) takes the general form

S(2) =
1
2
ξTAξ + ηBη + ξTΓη + ηΓξ

=
1
2

(
ξTAξ + ηBη − ηTBT ηT + ξTΓη

−ηTΓT ξ + ηΓξ − ξTΓT ηT
)
, (2.9)

where A,B, Γ, Γ are operators in the respective spaces;
A = AT and B are bosonic differential operators, whereas
Γ and Γ are fermionic (Grassmann) operators. They all
depend on the classical solutions ϕcl, ψcl.

The standard procedure for the evaluation of (2.7) is
to integrate first over the fermion fields η, η to yield the
bosonic functional integral

eiWL=1 = detB
∫

[dξ] e
i
2 ξ

T
(
A−ΓB−1Γ+ΓTB−1TΓ

T
)
ξ
.

This leads to the familiar result

WL=1 =
i

2

[
ln det

(
A− ΓB−1Γ + ΓTB−1TΓ

T
)

− ln detA0

]
− i(ln detB − ln detB0)

=
i

2
Tr ln

A

A0
− i Tr ln

B

B0

+
i

2
Tr ln

(
1 −A−1ΓB−1Γ +A−1ΓTB−1TΓ

T
)

=
i

2
Tr ln

A

A0
− i Tr ln

B

B0
−

∞∑
n=1

i

2n

×Tr
(
A−1ΓB−1Γ −A−1ΓTB−1TΓ

T
)n

,

A0 := A|j=ρ=ρ=0, B0 := B|j=ρ=ρ=0 . (2.10)

Recalling that A−1, B−1 are the scalar and fermion matrix
propagators in the presence of external sources, the one-
loop functional WL=1 is seen to be a sum of the bosonic
one-loop functional i2 Tr ln(A/A0), the fermion-loop func-
tional −i Tr ln(B/B0) and a mixed one-loop functional
where scalar and fermion propagators alternate. In or-
der to determine the ultraviolet divergences that occur in
the mixed term in (2.10), the calculational inconveniences
mentioned in Sect. 1 are encountered.

These problems can be circumvented [7] by reorganiz-
ing the three parts of WL=1 into a more compact form,
using the notion of supermatrices, supertraces, etc. (see
for instance [8,9]). Combining the bosonic and fermionic
fluctuation variables in a multicomponent field

λ =


 ξ
η
ηT


 , (2.11)

S(2) in (2.9) can be written as

S(2) =
1
2
λT K λ . (2.12)

The explicit form of the supermatrix operator K follows
immediately from the second line in (2.9):

K =


 A Γ −ΓT

−ΓT 0 −BT
Γ B 0


 . (2.13)

The one-loop functional of connected Green functions can
now be written in compact form [7] in terms of a super-
trace

WL=1 =
i

2
Str ln

K

K0
. (2.14)

With the notation

Str O =
∫
ddx str〈x|O|x〉

I distinguish supertraces with and without space-time in-
tegration.
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For actual calculations, the form of the supermatrix
operator K defined in (2.13) is not the most convenient
one. Applying a similarity transformation to K, the gen-
erating functional can also be written as

WL=1 =
i

2
Str ln

K ′

K ′
0

(2.15)

with

K ′ =


 A

√
µ Γ −√

µ ΓT√
µ Γ µB 0√
µ Γ

T
0 µBT


 . (2.16)

The arbitrary mass parameter µ introduced in (2.16) guar-
antees equal dimensions for all entries in K ′ ([K ′] = [A] =
2). Although this quantity does not, of course, appear in
any final result, it turns out to be quite helpful for the
inspection of expressions at intermediate stages of calcu-
lations.

In the proper-time formulation, the one-loop functional
assumes the form

WL=1 = − i

2

∫ ∞

0

dτ

τ
Str

(
eiτK

′ − eiτK
′
0

)
(2.17)

= − i

2

∫ ∞

0

dτ

τ

∫
ddx str

〈
x

∣∣∣eiτK′ − eiτK
′
0

∣∣∣x〉 ,

which is just the desired super-heat-kernel representation.
Note that the convergence of the integral at the upper
end (τ → ∞) is guaranteed by the small imaginary parts
present in the bosonic and fermionic differential operators
A and B, which are ensuring at the same time the usual
Feynman boundary conditions. (For a free theory A =
−2 − M2 + iε, B = i 6 ∂ − m + iε.) On the other hand,
the behaviour of the integral at the lower end exhibits the
divergence structure of the theory under investigation.

As long as we are only interested in those parts of the
one-loop functional that are at most bilinear in fermion
fields, the supermatrix K ′ can be reduced to the simpler
form

K ′′ =
[

A
√

2µ Γ√
2µ Γ µB

]
, (2.18)

such that the one-loop functional reads

WL=1 =
i

2
Str ln

K ′′

K ′′
0

− i

2
Tr ln

B

B0
+ . . . (2.19)

The terms omitted are at least quartic in the fermion
fields.

3 Scalars interacting with heavy fermions

In the case of chiral perturbation theory with heavy
baryons, the fluctuation action (2.9) generated by the low-
est order meson–baryon Lagrangian (O(p2) in the mesonic
and O(p) in the baryonic part) has the general form

S(2) = −1
2
ξT (DµD

µ + Y ) ξ + η (α+ βµD
µ) ξ

+ξT
(
δ − βµDµ

)
η + ηivµDµη , (3.1)

where

Dµ = ∂µ +Xµ , Dµ = ∂µ + fµ , δ = α− Dµβµ ,

v2 = 1 , v · β = 0 . (3.2)

Xµ, Y and fµ are bosonic (matrix-) fields, whereas α and
βµ are fermionic objects. The form of δ in (3.2) is required
by the reality of (3.1). vµ is the usual velocity vector in-
troduced in the heavy mass expansion. Apart from the
condition v · β = 0 (which is indeed satisfied in heavy
baryon chiral perturbation theory), no further assumption
about the terms entering in (3.1) is made in this section.
The discussion will therefore apply to a rather large class
of theories of scalars interacting with heavy fermions, not
necessarily related to chiral perturbation theory. The fur-
ther specialization to the pion–nucleon system is reserved
until the next chapter.

The action (3.1) is invariant under local gauge trans-
formations

ξ(x) → R(x)ξ(x) , R(x)TR(x) = 1 ,

η(x) → U(x)η(x) , U(x)†U(x) = 1 ,
Xµ → R∂µR

−1 +RXµR
−1 ,

Y → RY R−1 ,

fµ → U∂µU
−1 + UfµU

−1 ,

α → UαR−1 ,

βµ → UβµR
−1 . (3.3)

Consequently, also the divergent part of the one-loop func-
tional exhibits this symmetry property [10]. The matrix-
fields Y , α, βµ together with their covariant derivatives

∇̂µY := ∂µY + [Xµ, Y ],

∇̂µα := ∂µα+ fµα− αXµ,

∇̂µβν := ∂µβν + fµβν − βνXµ, (3.4)

and the associated “field-strength” tensors

Xµν := ∂µXν − ∂νXµ + [Xµ, Xν ],
fµν := ∂µfν − ∂νfµ + [fµ, fν ] (3.5)

are therefore the appropriate building blocks for the con-
struction of a gauge-invariant action.

The general heat-kernel formalism of the preceding sec-
tion will now be applied to (3.1). In this case, the matrix-
operators A, B, Γ and Γ defined in (2.9) are given by

A = −D2 − Y , B = iv · D ,

Γ = α+ β ·D , Γ = δ − β · D . (3.6)

As I am considering only terms at most bilinear in the
fermionic variables, the form (2.18) for the supermatrix
operator is the appropriate one. Employing the method of
Ball [11], the relevant diagonal space-time matrix element
can be written as

str
〈
x

∣∣∣eiτK′′
∣∣∣x〉 = str

∫
ddk

〈
x

∣∣∣eiτK′′
∣∣∣ k〉 〈k|x〉
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= str
∫

ddk

(2π)d
eikxeiτK

′′
e−ikx

= str
∫

ddk

(2π)d
eiτK̃

′′
1 , (3.7)

with

K̃ ′′ =
[−D2 − Y + k2 + 2ik ·D √

2µ
(
δ − β · D + ik · β)

√
2µ (α+ β ·D − ik · β) µ (iv · D + v · k)

]
.

(3.8)

The further evaluation of this expression is considerably
simplified by the observation that in the following inter-
mediate steps we may restrict ourselves to constant fields
[11] Xµ, α, βµ, fµ, Y = −X2. As the final result for the
one-loop divergences has to be gauge-invariant, no infor-
mation is lost and the full expression for space-time de-
pendent fields is recovered by the substitutions

−X2 → Y ,

−[Xµ, X
2] → ∇̂µY ,

[Xµ, Xν ] → Xµν ,

fµα− αXµ → ∇̂µα ,

fµβν − βνXµ → ∇̂µβν ,

[fµ, fν ] → fµν . (3.9)

In this approach, (3.7) reduces to the much simpler ex-
pression

str
〈
x|eiτK′′ |x

〉
=

∫
ddk

(2π)d
str eM+N (3.10)

with

M = iτ

[
k2 + 2ik ·X 0

0 µ(iv · f + v · k)
]
, (3.11)

N = iτ
√

2µ
[

0 δ − β · f + ik · β
α+ β ·X − ik · β 0

]
.

Let us first consider the part bilinear in the fermionic
matrix N (generating the terms of the form α . . . α, α . . .
βµ, βµ . . . α, βµ . . . βν). The corresponding part of the gen-
erating functional (2.10) is just

WL=1|Γ...Γ := −i Tr (A−1ΓB−1Γ ) . (3.12)

The appropriate decomposition of the exponential in
(3.10) can be performed by using Feynman’s “disentan-
gling” theorem [12]:

exp(M +N) = expM Ps exp
∫ 1

0
ds Ñ(s) (3.13)

with

Ñ(s) := e−sMNesM

and

Ps exp
∫ 1

0
ds Ñ(s) :=

∞∑
n=0

∫ 1

0
ds1

∫ s1

0
ds2 (3.14)

. . .

∫ sn−1

0
dsn Ñ(s1)Ñ(s2) . . . Ñ(sn).

(In the mathematical literature, (3.13) is also known as
“Duhamel’s formula”.) Picking out the part bilinear in
N ,

str eM+N =
∫ 1

0
ds

∫ s

0
ds′ str

×
[
e(1−s)MNe(s−s

′)MNes
′M

]
+ . . . , (3.15)

a few simple manipulations lead to

str eM+N = −2µτ2
∫ 1

0
dz eiτ [(1−z)k2+zµv·k] (3.16)

× tr
[
(δ − β · f + iβ · k)e−τzµv·f

× (α+ β ·X − iβ · k)e−2τ(1−z)k·X
]

+ . . .

After integration over z, the µ-dependent terms cancel
once the proper-time and the momentum-space integrals
are applied. The remaining contribution to WL=1 assumes
the form

WL=1|Γ...Γ = −
∫
ddx

∫ ∞

0

dt

t
t3−d

∫
ddl

(2π)d
eiv·l (3.17)

× tr
[
(δ − β · f + iβ · l/t)e−tv·f

× (α+ β ·X − iβ · l/t)(l2 + 2itl ·X)−1] ,

where a suitable change of the integration variables has
been performed. The divergent part (for d → 4) can now
be easily isolated:

W div
L=1|Γ...Γ (3.18)

= Γ (4 − d)
∫
ddx

∫
ddl

(2π)d
eiv·l

l2
tr

{
(δ − β · f)

v · f (α+ β ·X) +
1
3!
β · l (v · f)3β · l

+
[
(δ − β · f)(α+ β ·X) + i(δ − β · f) v · f β · l

−iβ · l v · f (α+ β ·X) +
1
2!
β · l (v · f)2β · l

]
2il ·X
l2

+
[−i(δ − β · f)β · l + iβ · l (α+ β ·X)

−β · l v · f β · l]4(l ·X)2

(l2)2
− β · l β · l 8i(l ·X)3

(l2)3

}
.

The necessary formulas for the l-integration are given in
the Appendix. In the last step, one has to identify the
appropriate gauge-invariant combinations (constituting a
non-trivial check of the calculation) and reconstruct the
full result by using (3.9). In this way, I finally obtain:

W div
L=1|Γ...Γ =

i

48π2(d− 4)

∫
d4x tr

{
−12α v · ∇̂α



H. Neufeld: The super-heat-kernel expansion and the renormalization of the pion–nucleon interaction 359

+6
[
αβµX

µνvν + βµαX
µνvν

]
−3

[
β · β v · ∇̂Y + 2βµ(v · ∇̂βµ)Y

]
−4βµ(v · ∇̂)3βµ + β · β ∇̂µX

µνvν

+6βµ(v · ∇̂βν)Xµν + 4βµβν v · ∇̂Xµν

+2βµβν∇̂µXνρvρ

}
. (3.19)

Note that (3.19) has to be real, which is another indepen-
dent check of the result.

The remaining part of the generating functional with
the fermionic operators Γ , Γ turned off,

WL=1|Γ=Γ=0 =
i

2
Tr ln

A

A0
− i Tr ln

B

B0
, (3.20)

does not require any additional effort. A simple calculation
(involving a Gaussian momentum-space integration) gives

i

2
Tr lnA|div = − 1

(4π)2(d− 4)
(3.21)

×
∫
d4x tr

(
1
12
XµνX

µν +
1
2
Y 2

)
,

which is the standard result obtained by ’t Hooft [10] using
diagrammatic methods.

The second term in (3.20) vanishes identically, as it
corresponds to the closed loop of a “light” fermion com-
ponent in the heavy mass expansion:

Tr lnB = −
∫
ddx

∫ ∞

0

dt

t

∫
ddk

(2π)d
tr

(
eit(iv·D+v·k)1

)

= −
∫
ddx

∫ ∞

0

dt

t
t−d

∫
ddl

(2π)d
eiv·l tr

(
e−tv·D1

)
= 0 ,

which follows from∫
ddl

(2π)d
eiv·l = δ(d)(v) = 0 .

4 Renormalization
of the pion–nucleon interaction

The functionals (3.19) and(3.21) are the basic formulas for
the analysis of the one-loop divergences to O(p3) in heavy
baryon chiral perturbation theory. They can be applied
to both the two-flavour and the three-flavour case. In the
following I shall confine myself to chiral SU(2).

The starting point for the formulation of the effective
field theory of the pion–nucleon system is QCD with the
two light flavours u, d coupled to external Hermitian fields
[13]:

L = L0
QCD + q̄γµ

(
Vµ +

1
3
Vsµ + γ5Aµ

)
q − q̄(S − iγ5P )q ,

q =
[
u
d

]
. (4.1)

L0
QCD is the QCD Lagrangian with mu = md = 0, S and

P are general two-dimensional matrix fields, the isotriplet
vector and axial-vector fields Vµ,Aµ are traceless and the
isosinglet vector field Vsµ is included to generate the elec-
tromagnetic current.

Explicit chiral symmetry breaking is built in by set-
ting S = Mquark = diag [mu,md]. The chiral group G =
SU(2)L × SU(2)R is spontaneously broken to the isospin
group SU(2)V . It is realized non-linearly [14] on the Gold-
stone pion fields φ:

uL(φ)
g→ gLuL(φ)h(g, φ)−1, g = (gL, gR) ∈ G ,

uR(φ)
g→ gRuR(φ)h(g, φ)−1, (4.2)

where uL, uR are elements of the chiral coset space SU(2)L
×SU(2)R/SU(2)V and the compensator field h(g, φ) is in
SU(2)V .

The nucleon doublet Ψ transforms as

Ψ =
[
p
n

]
g→ Ψ ′ = h(g, φ)Ψ (4.3)

under chiral transformations. The local nature of this
transformation requires a connection

Γµ =
1
2

[
u†
R(∂µ − irµ)uR + u†

L(∂µ − i`µ)uL
]

(4.4)

in the presence of external gauge fields

rµ = Vµ + Aµ , `µ = Vµ − Aµ (4.5)

to define a covariant derivative

∇µΨ = (∂µ + Γµ − iVsµ)Ψ . (4.6)

To lowest order in the chiral expansion the effective
Lagrangian of the pion–nucleon system is [1,13]

Leff =
F 2

4
〈uµuµ + χ+〉 + Ψ̄

(
i 6∇ −m+

gA
2

6uγ5

)
Ψ,(4.7)

with

uµ = i
[
u†
R(∂µ − irµ)uR − u†

L(∂µ − i`µ)uL
]
,

χ = 2B(S + iP ), χ+ = u†
RχuL + u†

Lχ
†uR .

F,m, gA are the pion decay constant, the nucleon mass and
the neutron decay constant in the chiral limit, whereas B
is related to the quark condensate. 〈. . .〉 stands for the
trace in flavour space.

The heavy baryon mass expansion of (4.7) is obtained
by introducing velocity-dependent fields

Nv(x) = eimv·xP+
v Ψ(x) , (4.8)

Hv(x) = eimv·xP−
v Ψ(x) ,

P±
v =

1
2
(1± 6v) , v2 = 1 ,

leading to

Leff =
F 2

4
〈uµuµ + χ+〉

+Nv (iv · ∇ + gAS · u)Nv + . . . (4.9)
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The additional terms involving the “heavy” fermion com-
ponents Hv are irrelevant for our present purposes. (For a
more detailed discussion the reader is referred to [5,15].)
The only dependence on Dirac matrices in (4.9) is through
the spin-vector matrices

Sµ =
i

2
γ5σ

µνvν , S · v = 0 , S2 = −3
4
1 , (4.10)

which obey the (anti-) commutation relations

{Sµ, Sν} =
1
2
(vµvν − gµν) ,

[Sµ, Sν ] = iεµνρσvρSσ . (4.11)

To obtain the associated second-order fluctuation La-
grangian L(2)

eff , (4.9) is expanded around the classical fields
φcl, Nv,cl. In the standard “gauge” uR(φcl) = u†

L(φcl) =:
u(φcl) a convenient choice of the bosonic fluctuation vari-
ables ξi (i = 1, 2, 3) is given by [13]

uR(φ) = u(φcl) e
i
→
ξ(φ)·→

τ
2F , uL(φ) = u†(φcl) e− i

→
ξ(φ)·→

τ
2F ,

→
ξ (φcl) = 0 , (4.12)

where
→
τ denotes the Pauli matrices. For the fermion fields

I write Nv = Nv,cl + η. In this way I get

L(2)
eff =

1
2

[
(dµkiξi)(d

µ
kjξj) − σijξiξj

]
+

1
8F 2Nv

×[iξi[τi, τk](v · dkjξj) + gAξi[τi, [S · u, τj ]]ξj]Nv
+

1
F
Nv

[
i

4
[v · u, τi]ξi − gASµτi(d

µ
ijξj)

]
η

+
1
F
η

[
i

4
[v · u, τi]ξi − gASµτi(d

µ
ijξj)

]
Nv

+η(iv · ∇ + gAS · u)η , (4.13)

where

dµij = δij∂
µ + γµij , γµij = −1

2
〈Γµ [τi, τj ]〉 ,

σij =
1
4

〈(u · u+ χ+) δij − τiuµτju
µ〉 . (4.14)

Note that the quantities Nv, uµ, Γµ, χ+ in (4.13) are to be
taken at the solutions of the classical equations of motion.
(The subscript “cl” has only been dropped for simplicity.)

It is now easy to verify that the action associated with
(4.13) can indeed be written in the standard form (3.1) by
setting

Xµ = γµ + gµ , gµij = − ivµ

8F 2Nv[τi, τj ]Nv ,

i = 1, 2, 3 , Y = σ + s ,

sij =
gA
4F 2Nv (2 δij S · u− τi S · u τj − τj S · u τi)Nv ,

fµ = Γµ − iVsµ − ivµgAS · u
αai =

i

4F
([v · u, τi]Nv)a , a = 1, 2 ,

(βµ)ai = −gA
F
Sµ(τiNv)a . (4.15)

Let us first consider the one-loop divergences generated
by (3.21). Using (4.15),

tr Y 2 = tr σ2 + 2 tr (σs) + . . . (4.16)

and

tr (XµνX
µν) = tr γµνγµν + 4 tr {γµν(∂µgν + [γµ, gν ])}

+ . . . , (4.17)

where
γµν := ∂µγν − ∂νγµ + [γµ, γν ] . (4.18)

The first terms on the right-hand sides of (4.16) and (4.17)
are purely mesonic; they determine the divergence struc-
ture of the well-known Gasser–Leutwyler functional of
O(p4) [13]. The second ones are bilinear in the fermion
fields, whereas the dots refer to irrelevant terms ∼ (Nv . . .
Nv)2. To facilitate the comparison with [5], I write the
fermion bilinears extracted from (3.21) in the following
form:

W div
L=1|Γ=Γ=0 =

∫
d4xNv Σ

div
1 Nv ,

Σdiv
1 = − 1

8π2F 2(d− 4)
Σ̂1 . (4.19)

For Σ̂1 I find

Σ̂1 = − i

6
(∇µΓµνv

ν) +
gA
4

(〈u · u+ χ+〉S · u
+ 〈S · uuµ〉uµ) , (4.20)

where
Γµν := ∂µΓν − ∂νΓµ + [Γµ, Γν ] . (4.21)

This result agrees with the corresponding expression in
(36) of [5]. Note that I have used several SU(2) relations
to arrive at a simpler form for Σ̂1 in (4.20).

The one-loop divergences originating from (3.19) are
again presented in the form

W div
L=1|Γ...Γ =

∫
d4xNv Σ

div
2 Nv ,

Σdiv
2 = − 1

8π2F 2(d− 4)
Σ̂2 . (4.22)

Inserting (4.15) in (3.19), I obtain:

Σ̂2 = i

{
1
4

[
2(v · u)2 +

〈
(v · u)2〉] v · ∇ +

1
2
v · u(v · ∇v · u)

+
1
4

〈v · u(v · ∇v · u)〉
}

+ gA

{
−1

2
v · u 〈S · u v · u〉

+
1
4

〈
S · u(v · u)2〉 − Sµvν [Γµν , v · u]

}

+ig2
A

{
−3

2
(v · ∇)3 − 5

6
(∇µΓµνv

ν)

+iεµνρσvρSσ [2Γµνv · ∇ + (v · ∇Γµν)]
− 3

32
(v · ∂ 〈4u · u+ 3χ+〉) − 3

16
〈4u · u+ 3χ+〉 v · ∇

}
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+g3
A

{
−1

2
S · u(v · ∇)2 − 2Sµ 〈S · uΓµν〉Sν

−1
2
(v · ∇S · u)v · ∇ − 1

6
(
(v · ∇)2S · u)

−1
4
uµ 〈uµS · u〉 − 1

16
S · u 〈χ+〉

}

+ig4
ASµ

{[
2(S · u)2 − 4

〈
(S · u)2〉] v · ∇

+
2
3
(v · ∇S · u)S · u

+
4
3
S · u(v · ∇S · u) − 4 〈S · u(v · ∇S · u)〉

}
Sµ

+g5
ASµ

{
2
3
(S · u)3 − 4

3
〈
(S · u)3〉}Sµ , (4.23)

which is in agreement with the corresponding result in [5].
(Note that “+−” in the fourth line of (53) in [5] should
be read as a minus sign.)

5 Conclusions

I have shown that the super-heat-kernel technique con-
stitutes the appropriate theoretical tool for analyzing the
one-loop divergences in systems with (non-renormalizable)
boson–fermion interactions. I recall here the essential in-
gredients that were combined to arrive at an efficient com-
putational scheme:

– The one-loop functional is written in terms of the su-
perdeterminant of a suitably chosen supermatrix op-
erator.

– The associated super-heat-kernel representation is the
appropriate form of the one-loop functional for study-
ing its divergence structure.

– It is easier to determine the diagonal heat-kernel ma-
trix elements directly by inserting a complete set of
plane waves instead of calculating the Seeley–DeWitt
coefficients with two different space-time arguments
and taking the coincidence-limit at the end.

– The heat-kernel-representation is perfectly well defined
also for supermatrices with first-order (fermion) differ-
ential operators1.

– The second-order fluctuation action is invariant under
a local gauge transformation. As a consequence, this
symmetry property is also shared by the divergence
functional.

– At intermediate stages, the calculation can be carried
out with constant (classical) fields, avoiding cumber-
some manipulations with derivatives acting on space-
time dependent objects. At the end, the general result
is recovered by gauge invariance.

– Feynman’s disentangling theorem allows the proper
decomposition of the exponential of a sum of non-
commuting terms.

1 Note, however, that “squaring” of the fermionic differential
operator may simplify the analysis in theories where the full
relativistic Dirac operator is still present [7]

– With the divergence functional given in compact form,
the one-loop renormalization of effective quantum field
theories becomes an easy task, requiring only a few
purely algebraic operations.

The application to heavy baryon chiral perturbation the-
ory with two flavours served as an explicit example. A
previous result for the counterterms to O(p3) was con-
firmed.

With the super-heat-kernel method at hand, the sys-
tematic study of effective field theories at the one-loop
level is simplified considerably. I am giving here a small
selection of possible applications and extensions of the
present work:

– The treatment of the meson–baryon interaction with
three flavours is completely analogous to the two-
flavour case disussed before.

– The inclusion of fields with higher spin (photon, ∆-
resonance, etc.) is straightforward. Their components
are simply added to the bosonic and fermionic sectors,
respectively.

– The completion of the one-loop renormalization for the
pion–nucleon interaction up to O(p4) may be achieved
by a suitable extension of (3.1).

– For the analysis of fermionic bound states, the com-
plete form (2.16) of the supermatrix operator must be
used, as terms quartic in the fermion fields are relevant
in this case.

– In analogy to the mesonic case [13], the super-heat-
kernel representation might also be useful for the fi-
nite part of the one-loop functional with two external
baryons.

Acknowledgements. I am indebted to Gerhard Ecker, Jürg
Gasser, Joachim Kambor and Marc Knecht for helpful discus-
sions and useful comments.

Appendix

I consider first the integrals

In(v2) :=
∫

ddl

(2π)d
eiv·l

(l2 + iε)n
= fn(d)(v2)

2n−d
2 (A.1)

with an arbitrary four-vector vµ. The fn(d) are given by

f1(d) = (−i)d−1 Γ (d− 2)

(4π)
d−1
2 Γ (d−1

2 )
(A.2)

and

fn(d) =
1

2n−1 (n− 1)! (d− 2n) . . . (d− 4)
f1(d) ,

n = 2, 3, . . . (A.3)

The momentum-space integrals occurring in (3.19) are
now obtained by differentiating (A.1) a sufficient number
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of times with respect to vµ and setting v2 = 1 at the end:∫
ddl

(2π)d
eiv·l

l2
d→4−→ i

4π2 , (A.4)∫
ddl

(2π)d
eiv·l

l2
lµlν

d→4−→ i

2π2 (gµν − 4vµvν) , (A.5)∫
ddl

(2π)d
eiv·l

(l2)2
lµ

d→4−→ − vµ
8π2 , (A.6)∫

ddl

(2π)d
eiv·l

(l2)2
lµlν

d→4−→ i

8π2 (gµν − 2vµvν) , (A.7)∫
ddl

(2π)d
eiv·l

(l2)2
lµlν lρ

d→4−→ 1
4π2 [− (gµνvρ + . . .)

+4vµvνvρ] , (A.8)∫
ddl

(2π)d
eiv·l

(l2)3
lµlν lρ

d→4−→ 1
32π2 [− (gµνvρ + . . .)

+2vµvνvρ] , (A.9)∫
ddl

(2π)d
eiv·l

(l2)3
lµlν lρlσ

d→4−→ i

32π2 [(gµνgρσ + . . .)

−2 (gµνvρvσ + . . .)
+8vµvνvρvσ] , (A.10)∫

ddl

(2π)d
eiv·l

(l2)4
lµlν lρlσlτ

d→4−→ 1
192π2 [− (gµνgρσvτ + . . .)

+2 (gµνvρvσvτ + . . .)
−8vµvνvρvσvτ ] . (A.11)

The dots indicate the necessary symmetrizations.
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